Differentiate between PLA and PAL. Explain 4-bit magnitude comparator.

Solution:

The **Difference between PAL and PLA** mainly includes **PAL and PLA full form**, construction, availability, flexibility, cost, number of functions, and speed which are discussed below.

Programmable Array Logic (PAL)	Programmable Logic Array (PLA)
The full form of PAL is programmable array logic	The full form of the PLA is a programmable logic array
The construction of PAL can be done using the programmable collection of AND & OR gates	The construction of PLA can be done using the programmable collection of AND & fixed collection of OR gates.
The availability of PAL is less prolific.	The availability of PLA is more prolofic and readily available.
The flexibility of PAL programming is more	The flexibility of PLA programming is less
The cost of a PAL is expensive	The cost of PLA is middle range
The number of functions implemented in PAL is large	The number of functions implemented in PLA is limited
The speed of PAL is slow	The speed of PLA is high

A comparator used to compare two binary numbers each of four bits is called a 4-bit magnitude comparator. It consists of eight inputs each for two four bit numbers and three outputs to generate **less than, equal to and greater than** between two binary numbers.

In a 4-bit comparator the condition of A>B can be possible in the following four cases:

- 1. If A3 = 1 and B3 = 0
- 2. If A3 = B3 and A2 = 1 and B2 = 0
- 3. If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0
- 4. If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

Similarly the condition for A<B can be possible in the following four cases:

- 1. If A3 = 0 and B3 = 1
- 2. If A3 = B3 and A2 = 0 and B2 = 1
- 3. If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1
- 4. If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1

The condition of A=B is possible only when all the individual bits of one number exactly coincide with corresponding bits of another number.

 $\therefore (A = B) = x_3 x_2 x_1 x_0$ $\therefore (A > B) = A_3 \overline{B_3} + x_3 A_2 \overline{B_2} + x_3 x_2 A_1 \overline{B_1} + x_3 x_2 x_1 A_0 \overline{B_0}$ $\therefore (A < B) = \overline{A_3} B_3 + x_3 \overline{A_2} B_2 + x_3 x_2 \overline{A_1} B_1 + x_3 x_2 x_1 \overline{A_0} B_0$

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

Fig. 4-17 4-Bit Magnitude Comparator